Utilidad clínica del lactato en el paciente oncológico

Autores/as

  • Jorge Luis Vélez Páez Unidad de Terapia Intensiva-Hospital Pablo Arturo Suárez
  • Fernando Jara González Unidad de Terapia Intensiva-Hospital Pablo Arturo Suárez
  • Mario Montalvo Villagómez Unidad de Terapia Intensiva-Hospital Pablo Arturo Suárez
  • Gustavo Velarde Montero Universidad Católica del Ecuador
  • Pablo Vélez Páez Universidad Central del Ecuador
  • Juan Paredes Ballesteros Universidad Católica del Ecuador

DOI:

https://doi.org/10.29018/issn.2588-1000vol1iss4.2017pp7-11

Palabras clave:

Glucólisis aeróbica, acidosis láctica tipo B, reprogramación celular, neoplasias hematológicas

Resumen

Acorde a la hipótesis de Warburg, las células cancerígenas, seleccionan la glucólisis aerobia, como la principal forma de metabolizar la glucosa en lugar de la fosforilación oxidativa, debido a ello las células tumorales captan más moléculas de glucosa, para generar acido láctico, necesario para mantener el micro ambiente celular.

Hoy en día, los procesos de reprogramación metabólica, han llevado al estudio de diversos oncogenes y genes supresores, que se encargan en las células proliferantes de la reprogramación del metabolismo mitocondrial.

Así, la acidosis láctica tipo B, los fenómenos metabólicos de reprogramación, la sobre expresión de hexoquinasa II y alteraciones en la pirofosfato de tiamina, (PPT) entre otras, causan elevaciones del lactato, que han sido pobremente descritas.

Con lo antes mencionado, intentamos adentrarlos, en esta revisión, al conocimiento del lactato y el cáncer.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

AJKDblog (2013). Cancer-Associated Type B Lactic Acidosis – AJKD Blog.

Alonso Remedios, A., Pérez Cutiño, M., Vidal Pérez, Z., and Vidal Pérez, A. (2016). Papel de la reprogramación metabólica en la carcinogénesis. Correo Científico Médico, 20(2):292–304.

Calcinotto, A., Filipazzi, P., Grioni, M., Iero, M., De Milito, A., Ricupito, A., Cova, A., Canese, R., Jachetti, E., Rossetti, M., et al. (2012). Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating t lymphocytes. Cancer research, 72(11):2746–2756.

Carella, A. M., Marinelli, T., Pumpo, M. D., Ponziano, E., and Benvenuto, A. (2015). Metabolic Disorders in Hematologic Malignancies- A Review.
Archives of Medicine, 7(5).

Claudino, W. M., Dias, A., Tse, W., and Sharma, V. R. (2015). Type b lactic acidosis: a rare but life threatening hematologic emergency. a case illustration and brief review. American journal of blood research, 5(1):25.

Costello, L. C. and Franklin, R. B. (2005). ‘why do tumour cells glycolyse?’: from glycolysis through citrate to lipoge-nesis. Molecular and cellular biochemistry, 280(1):1–8.

Dagher, G. A., El Khuri, C., Chehadeh, A. A.-H., Chami, A., Bachir, R., Zebian, D., and Chebl, R. B. (2017). Are patients with cancer with sepsis and bacteraemia at a higher risk of mortality? a retrospective chart review of patients presenting to a tertiary care centre in lebanon. BMJ open, 7(3):e013502.

De Groot, R., Sprenger, R., Imholz, A., and Gerding, M. (2011). Type b lactic acidosis in solid malignancies. Neth J Med, 69(3):120–123.

Dean, R. K., Subedi, R., Gill, D., and Nat, A. (2017). Con-sideration of alternative causes of lactic acidosis: Thiamine deficiency in malignancy. The American Journal of Emer-gency Medicine.

DeBerardinis, R. J. and Cheng, T. (2010).Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene, 29(3):313–324.

DeBerardinis, R. J., Sayed, N., Ditsworth, D., and Thompson,C. B. (2008).
Brick by brick: metabolism and tumor cell growth. Current opinion in genetics & development, 18(1):54–61.

Feron, O. (2009). Pyruvate into lactate and back: from the warburg effect to symbiotic energy fuel exchange in cancer cells. Radiotherapy and oncology, 92(3):329–333.

Gatenby, R. A. and Gillies, R. J. (2004). Why do cancers have high aerobic glycolysis? Nature Reviews Cancer, 4(11):891–899.

Gilead, A. and Neeman, M. (1999). Dynamic remodeling of the vascular bed precedes tumor growth: Mls ovarian carcinoma spheroids implanted in nude mice. Neoplasia,1(3):226–230

Glasheen, J. and Sorensen, M. (2005). Burkitt’s lymphoma presenting with lactic acidosis and hypoglycemia-a case presentation. Leukemia & lymphoma, 46(2):281–283.

Hanahan, D. and Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. cell, 144(5):646–674.

Hoogwerf, D., Van Doorn, J., and Maartense, E. (2013). The insulin-like growth factor-system in a patient with diffuse large b-cell non-hodgkin’s lymphoma and lactic acidosis. Annals of clinical biochemistry, 50(2):169–172.

House, S. W., Warburg, O., Burk, D., and Schade, A. L. (1956). On respiratory impairment in cancer cells. Science, 124(3215):267–272.

Hsu, P. P. and Sabatini, D. M. (2008). Cancer cell metabolism: Warburg and beyond. Cell, 134(5):703–707.

Jiang, B. (2017). Aerobic glycolysis and high level of lactate in cancer metabolism and microenvironment. Genes & Diseases.

Kece, E., Yaka, E., Yılmaz, S., Dogan, N. O., Alyes ̧il, C., and Pekdemir, M. (2016). Comparison of diagnostic and
prognostic utility of lactate and procalcitonin for sepsis in adult cancer patients presenting to emergency department with systemic inflammatory response syndrome.Turkish journal of emergency medicine, 16(1):1–7.

Koukourakis, M. I., Giatromanolaki, A., Harris, A. L., and Sivridis, E. (2006). Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcino-mas: a metabolic survival role for tumor-associated stroma. Cancer research, 66(2):632–637.

Kroemer, G. and Pouyssegur, J. (2008). Tumor cell metabo-lism: cancer’s achilles’ heel. Cancer cell, 13(6):472–482.

Levine, A. J. and Puzio-Kuter, A. M. (2010). The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science, 330(6009):1340–1344.

Luft, D., Deichsel, G., Schmulling, R.-M., Stein, W., and Eggstein, M. (1983). Definition of clinically relevant lactic acidosis in patients with internal diseases. American journal of clinical pathology, 80(4):484–489.

Park, H., Lyons, J., Ohtsubo, T., and Song, C. (1999). Acidic environment causes apoptosis by increasing caspase activity. British journal of cancer, 80(12):1892–1897.

Pouysségur, J., Dayan, F., and Mazure, N. M. (2006). Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature, 441(7092):437–443.

Ruiz, J. P., Singh, A., and Hart, P. (2011). Type b lactic acidosis secondary to malignancy: case report, review of published cases, insights into pathogenesis, and prospects for therapy. The Scientific World Journal, 11:1316–1324.

Semenza, G. L. (1998). Hypoxia-inducible factor 1: master regulator of o 2 homeostasis. Current opinion in genetics & development, 8(5):588–594.

Sillos, E. M., Shenep, J. L., Burghen, G. A., Pui, C.-H., Behm, F. G., and Sandlund, J. T. (2001). Lactic acidosis: a me-tabolic complication of hematologic malignancies. Cancer, 92(9):2237–2246.

Vander Heiden, M. G. and DeBerardinis, R. J. (2017). Unders-tanding the intersections between metabolism and cancer biology. Cell, 168(4):657–669.

Warner, E. (1992). Type b lactic acidosis and metastatic breast cancer. Breast cancer research and treatment, 24(1):75–79.

Webb, B. A., Chimenti, M., Jacobson, M. P., and Barber, D. L. (2011). Dysregulated ph: a perfect storm for cancer progression. Nature Reviews Cancer, 11(9):671–677.

Yasuda, S., Arii, S., Mori, A., Isobe, N., Yang, W., Oe, H., Fujimoto, A., Yonenaga, Y., Sakashita, H., and Imamura, M. (2004). Hexokinase ii and vegf expression in liver tumors: correlation with hypoxia-inducible factor-1 and its significance. Journal of hepatology, 40(1):117–123.

Younes, M., Ertan, A., Lechago, L. V., Somoano, J., and Lechago, J. (1997). Human erythrocyte glucose transporter (glut1) is immunohistochemically detected as a late event during malignant progression in barrett’s metaplasia. Can-cer Epidemiology and Prevention Biomarkers, 6(5):303–
305.

Zastre, J. A., Sweet, R. L., Hanberry, B. S., and Ye, S. (2013). Linking vitamin b1 with cancer cell metabolism. Cancer & metabolism, 1(1):16.

Descargas

Publicado

2017-11-29

Cómo citar

Vélez Páez, J. L., Jara González, F., Montalvo Villagómez, M., Velarde Montero, G., Vélez Páez, P., & Paredes Ballesteros, J. (2017). Utilidad clínica del lactato en el paciente oncológico. Pro Sciences: Revista De Producción, Ciencias E Investigación, 1(4), 7–11. https://doi.org/10.29018/issn.2588-1000vol1iss4.2017pp7-11

Número

Sección

ARTÍCULO DE INVESTIGACIÓN

Artículos más leídos del mismo autor/a